Head-mounted adaptive optics visual simulator.
Shoaib R SoomroSantiago SagerAlba M Paniagua DiazPedro M PrietoPablo ArtalPublished in: Biomedical optics express (2024)
Adaptive optics visual simulation is a powerful tool for vision testing and evaluation. However, the existing instruments either have fixed tabletop configurations or, being wearable, only offer the correction of defocus. This paper proposes a novel head-mounted adaptive optics visual simulator that can measure and modify complex ocular aberrations in real-time. The prototype is composed of two optical modules, one for the objective assessment of aberrations and the second for wavefront modulation, all of which are integrated into a wearable headset. The device incorporates a microdisplay for stimulus generation, a liquid crystal on silicon (LCoS) spatial light modulator for wavefront manipulation, and a Hartmann-Shack wavefront sensor. Miniature optical components and optical path folding structures, together with in-house 3D printed mounts and housing, were adapted to realize the compact size. The system was calibrated by characterizing and compensating the internal aberrations of the visual relay. The performance of the prototype was analyzed by evaluating the measurement and compensation of low-order and higher-order aberrations induced through trial lenses and phase masks in an artificial eye. The defocus curves for a simulated bifocal diffractive lens were evaluated in real eyes. The results show high accuracy while measuring and compensating for the induced defocus, astigmatism, and higher-order aberrations, whereas the MTF analysis shows post-correction resolution of up to 37.5 cycles/degree (VA 1.25). Moreover, the subjective test results show the defocus curves closely matched to a commercial desktop visual simulator.
Keyphrases