Login / Signup

Phase-resolved Functional Lung (PREFUL) MRI-derived Ventilation and Perfusion Parameters Predict Future Lung Transplant Loss.

Jens Vogel-ClaussenTill F KaireitAndreas VoskrebenzevFilip KlimešJulian GlandorfLea BehrendtMarcel GutberletChristopher KorzMilan SpethTobias WelteFrank K WackerJens Gottlieb
Published in: Radiology (2023)
Background Chronic lung allograft dysfunction (CLAD), the physiologic correlate of chronic rejection, remains a major barrier to long-term survival following lung transplant. Biomarkers for early prediction of future transplant loss or death due to CLAD might open a window of opportunity for early diagnosis and treatment of CLAD. Purpose To evaluate the prognostic use of phase-resolved functional lung (PREFUL) MRI in predicting CLAD-related transplant loss or death. Materials and Methods In this prospective, longitudinal, single-center study, PREFUL MRI-derived ventilation and parenchymal lung perfusion parameters of bilateral lung transplant recipients without clinically suspected CLAD were assessed 6-12 months (baseline) and 2.5 years (follow-up) after transplant. MRI scans were acquired between August 2013 and December 2018. Regional flow volume loop (RFVL)-based ventilated volume (VV) and perfused volume were calculated using thresholds and spatially combined as ventilation-perfusion (V/Q) matching. Spirometry data were obtained on the same day. Exploratory models were calculated using receiver operating characteristic analysis, and subsequent survival analyses (Kaplan-Meier, hazard ratios [HRs]) of CLAD-related graft loss were performed to compare clinical and MRI parameters as clinical end points. Results At baseline MRI examination, 132 clinically stable patients of 141 patients (median age, 53 years [IQR, 43-59 years]; 78 men) were included (nine were excluded for deaths not associated with CLAD), 24 of which had CLAD-related graft loss (death or retransplant) within the observational period of 5.6 years. PREFUL MRI-derived RFVL VV was a predictor of poorer survival (cutoff, 92.3%; log-rank P = .02; HR for graft loss, 2.5 [95% CI: 1.1, 5.7]; P = .02), while perfused volume ( P = .12) and spirometry ( P = .33) were not predictive of differences in survival. In the evaluation of percentage change at follow-up MRI (92 stable patients vs 11 with CLAD-related graft loss), mean RFVL (cutoff, 97.1%; log-rank P < .001; HR, 7.7 [95% CI: 2.3, 25.3]), V/Q defect (cutoff, 498%; log-rank P = .003; HR, 6.6 [95% CI: 1.7, 25.0]), and forced expiratory volume in the first second of expiration (cutoff, 60.8%; log-rank P < .001; HR, 7.9 [95% CI: 2.3, 27.4]; P = .001) were predictive of poorer survival within 2.7 years (IQR, 2.2-3.5 years) after follow-up MRI. Conclusion Phase-resolved functional lung MRI ventilation-perfusion matching parameters were predictive of future chronic lung allograft dysfunction-related death or transplant loss in a large prospective cohort who had undergone lung transplant. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Fain and Schiebler in this issue.
Keyphrases