Login / Signup

Combined bulked segregant sequencing and traditional linkage analysis for identification of candidate gene for purple leaf sheath in maize.

Pengcheng LiCancan DuYingying ZhangShuangyi YinEnying ZhangHuimin FangDezhou LinChenwu XuZefeng Yang
Published in: PloS one (2018)
Anthocyanin accumulation in various maize tissues plays important roles in plant growth and development. In addition, some color-related traits can be used as morphological markers in conventional maize breeding processes and purity identification of hybrid seeds. Here, we noticed that the leaf sheath color was controlled by a dominant gene, because purple (PSH) and green leaf sheaths (GSH) were separated at a ratio of 3:1 in an F2 population. To map the gene, an F2 and a recombinant inbred line (RIL) population were derived from a cross between inbred line T877 (PSH) and DH1M (GSH). The PSH locus was mapped to the genomic region within 128.8 to 138.4 Mb using a bulked segregant sequencing approach. This position was further validated by linkage mapping using 190 F2 plants with GSH. Subsequently, the PSH locus was fine-mapped into an interval of 304.2 kb. A maize gene, GRMZM5G822829, was identified in this region, encoding a bHLH transcription factor. The expression level of this gene in T877 was found to be 9-fold higher than that of DH1M. In conclusion, our results suggest that GRMZM5G822829 is the putative candidate gene conferring leaf sheath color in maize.
Keyphrases
  • genome wide
  • copy number
  • transcription factor
  • gene expression
  • dna methylation
  • single cell
  • air pollution
  • poor prognosis