Activating transcription factor 3 is a new biomarker correlation with renal clear cell carcinoma progression.
Zhicong YangYongwang HouJingqi LiDandan XuZhichao YangXinsheng WangPublished in: International journal of immunopathology and pharmacology (2024)
Background: Clear cell renal cell carcinoma (ccRCC) is the most invasive type of cancer, with a high risk of metastasis and recurrence. Therefore, there is an urgent need to identify novel prognostic predictors and therapeutic targets of ccRCC. Activating transcription factor 3 (ATF3), a tumor oncogene or repressor, has rarely been examined in ccRCC. In the present study, we comprehensively elucidate the prognostic value and potential functions of ATF3 in ccRCC. Methods: Several TCGA-based online databases were used to analyze ATF3 expression in ccRCC and determine ccRCC prognosis. The upstream-binding micro (mi) RNAs of ATF3 and long non-coding (lnc)RNAs were predicted using the StarBase database. Results: Analysis of several TCGA-based online databases showed that ATF3 expression is decreased in ccRCC, suggesting a significant association with the prognosis of patients with ccRCC. Furthermore, we found hsa-miR-221-3p to be potential regulatory miRNA of ATF3 in ccRCC. Prediction and analysis of the upstream lncRNAs indicated that PAXIP1-AS2 and OIP5-AS1 were the most potent upstream lncRNAs of the hsa-miR-221-3p/ATF3 axis in ccRCC. The results of the GO and KEGG analyses implied that ATF3 is likely involved in the regulation of apoptotic signaling in response to endoplasmic reticulum (ER) stress in ccRCC. Correlation analysis revealed a positive relationship between ATF3 expression and ER stress. Conclusions: Our in silico findings highlighted that ATF3 expression was low in ccRCC and negatively correlated with poor prognosis. Furthermore, PAXIP1-AS2 and the OIP5-AS1/hsa-miR-221-3p/ATF3 axis were identified as significant potential regulators of ER stress-mediated apoptosis in ccRCC.
Keyphrases
- transcription factor
- poor prognosis
- endoplasmic reticulum stress
- dna binding
- long non coding rna
- genome wide identification
- binding protein
- signaling pathway
- emergency department
- cell death
- climate change
- machine learning
- deep learning
- single cell
- risk assessment
- artificial intelligence
- health information
- human health
- lymph node metastasis
- clear cell
- anti inflammatory