Login / Signup

Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail.

Joonbum LeeJisi MaKi-Choon Lee
Published in: Proceedings of the National Academy of Sciences of the United States of America (2019)
Zygotes at the 1-cell stage have been genetically modified by microinjecting the CRISPR/Cas9 components for the generation of targeted gene knockout in mammals. In the avian species, genetic modification of the zygote is difficult because its unique reproductive system limits the accessibility of the zygote at the 1-cell stage. To date, only a few CRISPR/Cas9-mediated gene knockouts have been reported using the chicken as a model among avian species, which requires 3 major processes: isolation and culture of primordial germ cells (PGCs), modification of the genome of PGCs in vitro, and injection of the PGCs into the extraembryonic blood vessel at the early embryonic stages when endogenous PGCs migrate through circulation to the genital ridge. In the present study, the adenoviral CRISPR/Cas9 vector was directly injected into the quail blastoderm in newly laid eggs. The resulting chimeras generated offspring with targeted mutations in the melanophilin (MLPH) gene, which is involved in melanosome transportation and feather pigmentation. MLPH homozygous mutant quail exhibited gray plumage, whereas MLPH heterozygous mutants and wild-type quail exhibited dark brown plumage. In addition, the adenoviral vector was not integrated into the genome of knockout quail, and no mutations were detected in potential off-target regions. This method of generating genome-edited poultry is expected to accelerate avian research and has potential applications for developing superior genetic lines for poultry production in the industry.
Keyphrases