Login / Signup

Biosynthesis of Neokestose Laurate Catalyzed by Candida antarctica Lipase B and Its Antimicrobial Activity against Food Pathogenic and Spoilage Bacteria.

Yawei NingFeng ChenXueming XuYi JinZhixin WangKun YangYingmin Jia
Published in: Journal of agricultural and food chemistry (2017)
To increase the functionality and broaden the potential application of neokestose, neokestose laurate was biosynthesized using Candida antarctica lipase B as biocatalyst, for which a mixture of 20% DMSO in 2-methyl-2-butanol (v/v) was chosen as the reaction medium. The optimum conditions for biosynthesis were as follows: a molar ratio of vinyl laurate to neokestose of 12, a temperature of 50 °C, molecular sieves of 100 g/L, and enzyme loading of 10 g/L. Under the optimal conditions, the conversion rate was achieved over 80%. The synthesized chemical 6'-O-lauroylneokestose confirmed by nuclear magnetic resonance (NMR) exhibited good emulsification with critical micelle concentration (CMC) of 352 μM and broad antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus, Listeria monocytogenes, Streptococcus mutans, Bacillus subtilis, and Bacillus cereus. Conclusively, 6'-O-lauroylneokestose was evidenced to be a dual-functional agent with emulsification and antibacterial activity, showing promising application potential in the food industry.
Keyphrases