Login / Signup

Human TRMT2A methylates tRNA and contributes to translation fidelity.

Monika WitzenbergerSandra BurczykDavid SetteleWieland MayerLuisa M WelpMatthias HeissMirko WagnerThomas MoneckeRobert JanowskiThomas CarellHenning UrlaubStefanie M HauckAaron VoigtDierk Niessing
Published in: Nucleic acids research (2023)
5-Methyluridine (m5U) is one of the most abundant RNA modifications found in cytosolic tRNA. tRNA methyltransferase 2 homolog A (hTRMT2A) is the dedicated mammalian enzyme for m5U formation at tRNA position 54. However, its RNA binding specificity and functional role in the cell are not well understood. Here we dissected structural and sequence requirements for binding and methylation of its RNA targets. Specificity of tRNA modification by hTRMT2A is achieved by a combination of modest binding preference and presence of a uridine in position 54 of tRNAs. Mutational analysis together with cross-linking experiments identified a large hTRMT2A-tRNA binding surface. Furthermore, complementing hTRMT2A interactome studies revealed that hTRMT2A interacts with proteins involved in RNA biogenesis. Finally, we addressed the question of the importance of hTRMT2A function by showing that its knockdown reduces translation fidelity. These findings extend the role of hTRMT2A beyond tRNA modification towards a role in translation.
Keyphrases
  • binding protein
  • single cell
  • endothelial cells
  • dna binding
  • nucleic acid
  • gene expression
  • cell therapy
  • pluripotent stem cells