Energy optimization during walking involves implicit processing.
Megan J McAllisterRachel L BlairJ Maxwell DonelanJessica C SelingerPublished in: The Journal of experimental biology (2021)
Gait adaptations, in response to novel environments, devices or changes to the body, can be driven by the continuous optimization of energy expenditure. However, whether energy optimization involves implicit processing (occurring automatically and with minimal cognitive attention), explicit processing (occurring consciously with an attention-demanding strategy) or both in combination remains unclear. Here, we used a dual-task paradigm to probe the contributions of implicit and explicit processes in energy optimization during walking. To create our primary energy optimization task, we used lower-limb exoskeletons to shift people's energetically optimal step frequency to frequencies lower than normally preferred. Our secondary task, designed to draw explicit attention from the optimization task, was an auditory tone discrimination task. We found that adding this secondary task did not prevent energy optimization during walking; participants in our dual-task experiment adapted their step frequency toward the optima by an amount and at a rate similar to participants in our previous single-task experiment. We also found that performance on the tone discrimination task did not worsen when participants were adapting toward energy optima; accuracy scores and reaction times remained unchanged when the exoskeleton altered the energy optimal gaits. Survey responses suggest that dual-task participants were largely unaware of the changes they made to their gait during adaptation, whereas single-task participants were more aware of their gait changes yet did not leverage this explicit awareness to improve gait adaptation. Collectively, our results suggest that energy optimization involves implicit processing, allowing attentional resources to be directed toward other cognitive and motor objectives during walking.
Keyphrases