Synthesis and Evaluation of the Antidepressant-like Properties of HBK-10, a Novel 2-Methoxyphenylpiperazine Derivative Targeting the 5-HT1A and D2 Receptors.
Kinga SałaciakNatalia Malikowska-RaciaKlaudia LustykAgata SiwekMonika Głuch-LutwinGrzegorz KazekJustyna PopiółJacek SapaHenryk MaronaDorota ŻelaszczykKarolina PytkaPublished in: Pharmaceuticals (Basel, Switzerland) (2021)
The increasing number of patients reporting depressive symptoms requires the design of new antidepressants with higher efficacy and limited side effects. As our previous research showed, 2-methoxyphenylpiperazine derivatives are promising candidates to fulfill these criteria. In this study, we aimed to synthesize a novel 2-methoxyphenylpiperazine derivative, HBK-10, and investigate its in vitro and in vivo pharmacological profile. After assessing the affinity for serotonergic and dopaminergic receptors, and serotonin transporter, we determined intrinsic activity of the compound at the 5-HT1A and D2 receptors. Next, we performed behavioral experiments (forced swim test, tail suspension test) to evaluate the antidepressant-like activity of HBK-10 in naïve and corticosterone-treated mice. We also assessed the safety profile of the compound. We showed that HBK-10 bound strongly to 5-HT1A and D2 receptors and presented antagonistic properties at these receptors in the functional assays. HBK-10 displayed the antidepressant-like effect not only in naïve animals, but also in the corticosterone-induced mouse depression model, i.e., chronic administration of HBK-10 reversed corticosterone-induced changes in behavior. Moreover, the compound's sedative effect was observed at around 26-fold higher doses than the antidepressant-like ones. Our study showed that HBK-10 displayed a favorable pharmacological profile and may represent an attractive putative treatment candidate for depression.