Pd II -Catalyzed C(alkenyl)-H Activation Facilitated by a Transient Directing Group.
Mingyu LiuJuntao SunTuğçe G ErbayHui-Qi NiRaúl Martín-MonteroPeng LiuKeary M EnglePublished in: Angewandte Chemie (International ed. in English) (2022)
Palladium(II)-catalyzed C(alkenyl)-H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)-H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3-diene with high regio- and E/Z-selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2-aryl-substituted 1,3-dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X-ray crystallography, and the energy profiles of the C(alkenyl)-H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations.
Keyphrases
- density functional theory
- molecular dynamics
- room temperature
- amino acid
- systematic review
- molecular docking
- cerebral ischemia
- magnetic resonance imaging
- high resolution
- reduced graphene oxide
- computed tomography
- mass spectrometry
- smoking cessation
- highly efficient
- magnetic resonance
- blood brain barrier
- crystal structure
- structural basis
- dual energy