Login / Signup

Application of microdialysis combined with lipidomics to analyze fatty acid metabolic changes in the disease process of rheumatoid arthritis.

Xiao-Man JiangYu-Long ZhuPei-Rong GanYa LiShi-Lin XiaJing XuYi WeiRan DengHong Wu
Published in: Journal of pharmaceutical and biomedical analysis (2024)
Rheumatoid arthritis (RA) is a metabolically active disease, with shifts in fatty acid metabolism during disease progression profoundly affecting the systemic inflammatory response. Altered fatty acid biomarker metabolism may be a key target for the treatment of RA. To investigate the changes of fatty acid metabolism in RA, collagen-induced arthritis (CIA) model was established. Microdialysis sampling was utilized to overcome the characteristic of occlusive joint cavity in vivo synovial fluid (SF) sampling. Lipidomic methods were established with the UHPLC-Orbitrap Exploris120 platform, and lipid measurements were performed on serum and SF samples. Then, multivariate statistical analyses were performed to detect changes in lipid metabolites induced by CIA. Consequently, a total of 22 potential biomarkers associated with differential fatty acids were screened and identified in serum, and 13 were identified in SF. Notably, alterations were observed in metabolites such as Hexadecanoic acid, Octadecanoic acid, Arachidonic acid, (+/-)11,12-EpETrE, DHA, DPA, Myristic acid, Suberic acid, and others. This study explored a new mechanism of the RA disease process from the perspective of fatty acid metabolism. It provided a new strategy for experimental research on determining the optimal time for establishing CIA model and screening clinical diagnostic biomarkers.
Keyphrases