Login / Signup

Quantitative profiling of the protein coronas that form around nanoparticles.

Dominic DocterUte DistlerWiebke StorckJörg KuharevDesirée WünschAngelina HahlbrockShirley K KnauerStefan TenzerRoland H Stauber
Published in: Nature protocols (2014)
Nanoparticle applications in biotechnology and biomedicine are steadily increasing. In biological fluids, proteins bind to nanoparticles that form the protein corona, crucially affecting the nanoparticles' biological identity. As the corona affects in vitro and/or in vivo nanoparticle applications, we developed a method to obtain time-resolved protein corona profiles formed on various nanoparticles. After incubation in plasma or a similar biofluid, or after injection into a mouse, the first analytical step is sedimentation of the nanoparticle-protein complexes through a sucrose cushion, thereby allowing analysis of early corona formation time points. Next, corona profiles are visualized by gel electrophoresis and quantitatively analyzed after tryptic digestion using label-free liquid chromatography-high-resolution mass spectrometry. In contrast to other approaches, our established methodology allows the researcher to obtain qualitative and quantitative high-resolution corona signatures. The protocol can be readily extended to the investigation of protein coronas from various nanomaterials (as an example, we applied this protocol to different silica nanoparticles (SiNPs) and polystyrene nanoparticles (PSNPs)). Depending on the number of samples, the protocol from nanoparticle-protein complex recovery to data evaluation takes ~8-12 d to complete.
Keyphrases