Unraveling the molecular dynamics of Pseudomonas aeruginosa biofilms at the air-liquid interface.
Kidon SungMiseon ParkJungwhan ChonOhgew KweonSaeed KhanPublished in: Future microbiology (2024)
Aim: The aim of this study was to probe the dynamics of Pseudomonas aeruginosa PA14 air-liquid interface (ALI) biofilms over time through global proteomic analysis. Materials & methods: P. aeruginosa PA14 ALI biofilm samples, collected over 48-144 h, underwent differential expression analysis to identify varying proteins at each time point. Results: A consistent set of 778 proteins was identified, with variable expression over time. Upregulated proteins were mainly linked to 'amino acid transport and metabolism'. Biofilm-related pathways, including cAMP/Vfr and QS, underwent significant changes. Flagella were more influential than pili, especially in early biofilm development. Proteins associated with virulence, transporters and iron showed differential expression throughout. Conclusion: The findings enhance our understanding of ALI biofilm development.