Login / Signup

Strategic Formulation of Graphene Oxide Sheets for Flexible Monoliths and Robust Polymeric Coatings Embedded with Durable Bioinspired Wettability †.

Avijit DasJumi DekaAdil M RatherBibhas K BhuniaPartha Pratim SaikiaBiman B MandalKalyan RaidongiaUttam Manna
Published in: ACS applied materials & interfaces (2017)
Artificial bioinspired superhydrophobicity, which is generally developed through appropriate optimization of chemistry and hierarchical topography, is being recognized for its immense prospective applications related to environment and healthcare. Nevertheless, the weak interfacial interactions that are associated with the fabrication of such special interfaces often provide delicate biomimicked wettability, and the embedded antifouling property collapses on exposure to harsh and complex aqueous phases and also after regular physical deformations, including bending, creasing, etc. Eventually, such materials with potential antifouling property became less relevant for practical applications. Here, a facile, catalyst-free, and robust 1,4-conjugate addition reaction has been strategically exploited for appropriate covalent integration of modified graphene oxide to developing polymeric materials with (1) tunable mechanical properties and (2) durable antifouling property, which are capable of performing both in air and under oil. Furthermore, this approach provided a facile basis for (3) engineering a superhydrophobic monolith into arbitrary free-standing shapes and (4) decorating various flexible (metal, synthetic plastic, etc.) and rigid (glass, wood, etc.) substrates with thick and durable three-dimensional superhydrophobic coatings. The synthesized superhydrophobic monoliths and polymeric coatings with controlled mechanical properties are appropriate to withstand different physical insults, including twisting, creasing, and even physical erosion of the material, without compromising the embedded antiwetting property. The materials are also equally resistant to various harsh chemical environments, and the embedded antifouling property remained unperturbed even after continuous exposure to extremes of pH (pH 1 and pH 11), artificial sea water for a minimum of 30 days. These flexible and formable free-standing monoliths and stable polymeric coatings that are extremely water-repellent both in air and under oil, are of utmost importance owing to their suitability in practical circumstances and robust nature.
Keyphrases