Radiogenomic Signatures of Oncotype DX Recurrence Score Enable Prediction of Survival in Estrogen Receptor-Positive Breast Cancer: A Multicohort Study.
Ming FanYajing CuiChao YouLi LiuYa-Jia GuWeijun PengQianming BaiXin GaoLihua LiPublished in: Radiology (2021)
Background Radiogenomics explores the association between imaging features and genomic assays to uncover relevant prognostic features; however, the prognostic implications of the derived signatures remain unclear. Purpose To identify preoperative radiogenomic signatures of estrogen receptor-positive breast cancer associated with the Oncotype DX recurrence score (RS) and to evaluate whether they are biomarkers for survival and responses to neoadjuvant chemotherapy (NACT). Materials and Methods In this retrospective multicohort study, three data sets were analyzed. The radiogenomic development data set, with preoperative dynamic contrast-enhanced MRI and RS data obtained between January 2016 and October 2019 was used to identify radiogenomic signatures. Prognostic implications of the imaging signatures were assessed by measuring overall survival and recurrence-free survival in the prognostic assessment data set using a multivariable Cox proportional hazards model. The therapeutic implication of the radiogenomic signatures was evaluated by determining their ability to predict the response to NACT using the treatment assessment data set obtained between August 2015 and March 2019. Prediction performance was estimated by using the area under the receiver operating characteristic curve (AUC). Results The final cohorts included a radiogenomic development data set with 130 women (mean age, 52 years ± 10 [standard deviation]), a prognostic assessment data set with 116 women (mean age, 48 years ± 9), and a treatment assessment data set with 135 women (mean age, 50 years ± 11). Radiogenomic signatures (n = 11) of texture and morphologic and statistical features were identified to generate the predicted RS (R2 = 0.33, P < .001). A predicted RS greater than 29.9 was associated with poor overall and recurrence-free survival (P = .001 and P = .007, respectively); predicted RS was greater in women with a good NACT response (30.51 ± 6.92 vs 27.35 ± 4.04 [responders vs nonresponders], P = .001). By combining the predicted RS and complementary features, the model achieved improved performance in prediction of the NACT response (AUC, 0.85; P < .001). Conclusion Radiogenomic signatures associated with genomic assays provide markers of prognosis and treatment in estrogen receptor-positive breast cancer. © RSNA, 2021 Online supplemental material is available for this article.
Keyphrases
- free survival
- estrogen receptor
- positive breast cancer
- electronic health record
- genome wide
- neoadjuvant chemotherapy
- big data
- magnetic resonance imaging
- healthcare
- high resolution
- type diabetes
- polycystic ovary syndrome
- mass spectrometry
- metabolic syndrome
- magnetic resonance
- high throughput
- gene expression
- skeletal muscle
- machine learning
- lymph node
- computed tomography
- copy number
- health information
- pregnancy outcomes
- insulin resistance
- combination therapy
- artificial intelligence
- cervical cancer screening
- breast cancer risk