Reverse Genomics: Design of Universal Epitope Sets to Isolate All Saccharibacteria Members from the Human Oral Cavity.
Ahmad IbrahimMohamad MaatoukDidier RaoultFadi BittarPublished in: Microorganisms (2022)
Microorganisms not yet cultured represent a large proportion of the microbes described to date. Progress in sequencing and metagenomic tools continues to increase microbial diversity without providing information on their physiological and pathophysiological characteristics, such as the recent discovery of enigmatic microbes belonging to Candidate Phyla Radiation (CPR). Reverse genomics is a recent technique allowing co-cultivation of a few CPR members, affiliated to the Saccharibacteria phylum, based on the analysis of their already-available genomes. Here, our aim is to designate a common system capable of cultivating any given taxon of this phylum from human samples. We managed to design, in silico, 11 common epitopes for all Saccharibacteria species recovered from the human oral cavity and which can serve as antigens via bioinformatics analyses. These sequences allow the synthesis of target antibodies, sorting Saccharibacteria spp. by flow cytometry and co-culturing them afterwards with adapted hosts. This epitope set can facilitate the cultivation of CPR in general, which in recent years has been considered a challenge for microbiologists, and subsequently contributes to better studying this new branch on the tree of life.