Login / Signup

Zero-Oil-Fouling Membrane With High Coverage of Grafted Zwitterionic Polymer for Separation of Oil-in-Water Emulsions.

Aqiang WangYuzhang ZhuWangxi FangShoujian GaoJian Jin
Published in: Small methods (2023)
Current hydrophilic modification strategies improve the antifouling ability of membranes but fail to completely eliminate the fouling of emulsified oil droplets with a wide size distribution. Constructing membranes with superior anti-oil-fouling ability to resist various oil droplets especially at high permeation fluxes is challenging. Here, the fabrication of a zero-oil-fouling membrane by grafting considerably high coverage of zwitterionic polymer and building defect-free hydration defense barrier on the surface is reported. A uniform layer of protocatechuic acid with COOH as abundant as existing in every molecule is stably deposited on the membrane so as to provide sufficient reactive sites and achieve dense grafting of the zwitterionic polymer. The coverage of zwitterionic polymer on the membrane plays a crucial role in promoting the antifouling ability to emulsified oil droplets. The poly(vinylidene fluoride) membrane with 93% coverage of the zwitterionic polymer exhibits zero oil fouling when separating multitudinous oil-in-water emulsions with ≈0% flux decline, ≈100% flux recovery, and a high water flux of ≈800 L m -2 h -1 bar -1 . This membrane outperforms almost all of the reported membranes in terms of the comprehensive antifouling performance. This work provides a feasible route for manufacturing super-antifouling membranes toward oil/water separation application.
Keyphrases
  • fatty acid
  • high resolution
  • mass spectrometry