Login / Signup

Full-Color Tunable Fluorescent and Chemiluminescent Supramolecular Nanoparticles for Anti-counterfeiting Inks.

Minzan ZuoWeirui QianTinghan LiXiao-Yu HuJuli JiangLeyong Wang
Published in: ACS applied materials & interfaces (2018)
A drive for anti-counterfeiting technology has attracted considerable interests in developing nanomaterials with a wide range of colors and tunable optical properties in solid state. Herein, with a series of conjugated polymers and based on the host-guest driven self-assembly strategy, a color-tunable supramolecular nanoparticle-based system is reported, in which full-color as well as white fluorescence can be achieved. Moreover, this fluorescent platform exhibits reversible photoswitching between quenching and emission by noncovalently introducing a photoresponsive energy acceptor. In addition, an efficient chemiluminescence system with high intensity can also be obtained in a similar manner by introducing a H2O2-responsive energy donor. Significantly, chemiluminescence is advantageous over fluorescence since there is no need for external light irradiation. More importantly, these acceptor/donor-loaded supramolecular nanoparticles exhibit fluorescence/chemiluminescence modulation ability in both solution and solid state. Therefore, this supramolecular system can be employed as fluorescent security inks for anti-counterfeiting strategies and provide a proof-of-principle application.
Keyphrases