Intravoxel Incoherent Motion Diffusion for Identification of Breast Malignant and Benign Tumors Using Chemometrics.
Fengnong ChenPulan ChenHamed Hamid MuhammedJuan ZhangPublished in: BioMed research international (2017)
The aim of the paper is to identify the breast malignant and benign lesions using the features of apparent diffusion coefficient (ADC), perfusion fraction f, pseudodiffusion coefficient D⁎, and true diffusion coefficient D from intravoxel incoherent motion (IVIM). There are 69 malignant cases (including 9 early malignant cases) and 35 benign breast cases who underwent diffusion-weighted MRI at 3.0 T with 8 b-values (0~1000 s/mm2). ADC and IVIM parameters were determined in lesions. The early malignant cases are used as advanced malignant and benign tumors, respectively, so as to assess the effectiveness on the result. A predictive model was constructed using Support Vector Machine Binary Classification (SVMBC, also known Support Vector Machine Discriminant Analysis (SVMDA)) and Partial Least Squares Discriminant Analysis (PLSDA) and compared the difference between them both. The D value and ADC provide accurate identification of malignant lesions with b = 300, if early malignant tumor was considered as advanced malignant (cancer). The classification accuracy is 93.5% for cross-validation using SVMBC with ADC and tissue diffusivity only. The sensitivity and specificity are 100% and 87.0%, respectively, r2cv = 0.8163, and root mean square error of cross-validation (RMSECV) is 0.043. ADC and IVIM provide quantitative measurement of tissue diffusivity for cellularity and are helpful with the method of SVMBC, getting comprehensive and complementary information for differentiation between benign and malignant breast lesions.