Login / Signup

Process Standardization of Functionally Enriched Millet-Based Nutri-Cereal Mix Using D-Optimal Design Approach for Enhancing Food and Nutritional Security.

Samiksha SharmaSanjay KumarPankaj GautamAvvaru Praveen KumarVinod KumarWaseem AhmadAnkita Dobhal
Published in: ACS omega (2024)
Millets are currently employed in a variety of ways, including direct consumption and usage in the manufacture of certain cuisines or snacks. The present investigation was aimed at optimizing functionally enriched millet-based nutri-cereal mix comprising chicken and vegetable for a nutrition-deficient population. A total of 16 experiments were carried out by using optimal (custom) design model of mixture design with 60% major ingredients, including malted sorghum flour (20-30%), malted green gram flour (15-25%), and boiled chicken powder (5-15%). To make 100% of the total nutri-cereal mixture, other ingredients such as malted pearl millet (10%), finger millet flour (10%), beetroot powder (2.5%), pumpkin powder (7.5%), skimmed milk powder (9.5%), and stevia powder (0.5%) were added. Numerical optimization was done using Design Expert software, version 13. The optimized ratio was 30% malted sorghum flour, 15% malted green gram flour, and 15% chicken powder. The predicted values of responses 5.101%, 3.616%, 1.963%, 11.165%, 28.005%, 50.149%, 330.282 kcal, and 0.373 were in accordance with experimental values 6.426%, 3.455%, 1.714%, 11.432%, 29.12%, 47.853%, 323.318 kcal, and 0.385 for moisture, ash, fat, fiber, protein, carbohydrates, energy, and water activity, respectively, with a small error percentage. The results of mineral content, phenolic content, and amino acid profiling revealed that the optimized Nutri-cereal mix have higher amounts of these components. The results also suggested that the optimized Nutri-cereal mix of these malted millet flours can potentially enhance the nutritional deficiency as well as improve food and nutritional security.
Keyphrases
  • amino acid
  • gram negative
  • adipose tissue
  • global health
  • public health
  • small molecule
  • human health
  • multidrug resistant
  • municipal solid waste
  • anaerobic digestion