Login / Signup

Mitigating rumen methane and enhancing fermentation using rambutan fruit peel powder and urea in lactating dairy cows.

Thiwakorn AmpaponMetha Wanapat
Published in: Journal of animal physiology and animal nutrition (2021)
The experiment was designed to study the use of rambutan (Nephelium lappaceum) fruit peel powder (RP) with urea (U) supplementation on rumen fermentation, digestibility, methane (CH4 ) production, milk production and composition in lactating dairy cows. Four Holstein crossbred lactating dairy cows, with starting liveweight of 450 ± 15 kg with 130 ± 10 DIM (days-in-milk), were randomly allocated to respective treatments: without supplementation (control; T1), supplementation of urea (U) at 90 g/hd/day (T2), supplementation of RP at 450 g/hd/day (T3) and supplementation of RPU (RP at 450 g/hd/day and U 90 g/hd/day) (T4), respectively, using a 4 × 4 Latin square design. The results showed that the U, RP and RPU supplementation did not change feed intakes (p > 0.05) and digestibilities of DM and OM were similar. However, digestibilities of CP and NDF were increased in the U and RPU groups (p < 0.05). Acetate production was decreased, while propionate production was dramatically increased (p < 0.05) in both the RP and RPU groups respectively. Notably, the ratio of C2 :C3 , protozoal population and CH4 production was reduced in both the RP and RPU groups. In addition, nitrogen intake and nitrogen excretion were significantly higher while nitrogen retention was increased in the U and RPU groups. Allantoin excretion and absorption, microbial protein synthesis and efficiency of microbial N supply were increased in the U and RPU supplementation groups (p < 0.05). Furthermore, milk yield, milk fat and total solids were significantly enhanced in the U and RPU groups (p < 0.05). Moreover, the 3.5% FCM was increased (p < 0.05) while milk protein, lactose, solids-not-fat and milk urea nitrogen were not altered (p > 0.05). Supplementation of either U or RPU significantly improved fibre digestibilities, rumen fermentation, microbial protein synthesis, reduced protozoal population, mitigated CH4 production and enhanced milk yield and milk composition.
Keyphrases
  • dairy cows
  • microbial community
  • adipose tissue
  • metabolic syndrome
  • small molecule
  • fatty acid
  • physical activity
  • weight loss
  • protein protein