In this article, we propose a general framework to learn optimal treatment rules for type 2 diabetes (T2D) patients using electronic health records (EHRs). We first propose a joint modeling approach to characterize patient's pretreatment conditions using longitudinal markers from EHRs. The estimation accounts for informative measurement times using inverse-intensity weighting methods. The predicted latent processes in the joint model are used to divide patients into a finite of subgroups and, within each group, patients share similar health profiles in EHRs. Within each patient group, we estimate optimal individualized treatment rules by extending a matched learning method to handle multicategory treatments using a one-versus-one approach. Each matched learning for two treatments is implemented by a weighted support vector machine with matched pairs of patients. We apply our method to estimate optimal treatment rules for T2D patients in a large sample of EHRs from the Ohio State University Wexner Medical Center. We demonstrate the utility of our method to select the optimal treatments from four classes of drugs and achieve a better control of glycated hemoglobin than any one-size-fits-all rules.
Keyphrases
- end stage renal disease
- type diabetes
- ejection fraction
- newly diagnosed
- electronic health record
- chronic kidney disease
- prognostic factors
- healthcare
- cardiovascular disease
- public health
- peritoneal dialysis
- magnetic resonance
- machine learning
- mental health
- climate change
- cross sectional
- smoking cessation
- social media
- combination therapy
- drug induced
- neural network