Login / Signup

Comparison of Zybio Kit and saponin in-house method in rapid identification of bacteria from positive blood cultures by EXS2600 matrix-assisted laser desorption ionization time-of-flight mass spectrometry system.

Mislav PerasIvana MarekovićTomislav KulišManda MarkanovićAna Budimir
Published in: Journal of mass spectrometry : JMS (2024)
We evaluated the performance of Zybio EXS2600 matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Zybio Inc., Chongqing, China) for the identification of bacteria from positive blood culture (BC) bottles using Blood Culture Positive Sample Pretreatment Kit (Zybio Inc., Chongqing, China) in comparison to an in-house saponin method. Following a positive signal by the BACTEC™ FX system, confirmation of identification was achieved using subcultured growing biomass used for MALDI-TOF MS analysis. A total of 94 positive BC bottles with 97 bacterial isolates were analyzed. The overall identification rates at the genus and species levels for the saponin method were 89.7% (87/97) and 74.2% (72/97), respectively. With the Zybio Kit, 88.7% (86/97) and 80.4% (78/97) of microorganisms were correctly identified to the genus and species levels, respectively. The saponin method identified 65.3% (32/49) of Gram-positive bacteria at the species level, whereas the Zybio Kit achieved a higher species-level identification rate of 79.6% (39/49) (p = 0.1153). The saponin method with additional on-plate formic acid extraction showed a significantly higher overall identification rate in comparison to the saponin method without that step for both genus (87.6% [85/97] vs. 70.1% [68/97], p = 0.0029) and species level (70.1% [68/97] vs. 46.4% [45/97], p = 0.0008). Identification rates of Gram-negative bacteria showed a higher identification rate, however, not statistically significant with additional Zybio Kit protocol step on both genus (85.4% [41/48] vs. 81.3% [39/48], p = 0.5858) and species level (77.1% [37/48] vs. 75% [36/48], p = 0.8120). Zybio Kit could offer an advantage in species-level identification, particularly for Gram-positive bacteria. The inclusion of on-plate formic acid extraction in the saponin method notably enhanced identification at both genus and species levels for Gram-positive bacteria. The extended protocol provided by the Zybio Kit could potentially offer an advantage in the identification of Gram-negative bacteria at both genus and species levels. Enhancements to the Zybio EXS2600 MALDI-TOF instrument software database are necessary.
Keyphrases