Ideal animal models are needed to reflect the changes in the biochemical and biomechanical properties of the vagina that occur in pelvic organ prolapse (POP). In this study, we aimed to demonstrate the short and long-term effect of menopause on the biochemical and biomechanical properties of rat anterior vaginas. Here, Sprague-Dawley rats were bilaterally ovariectomized to induce menopause. Rats without ovariectomy served as the normal control group (n=12). The histology changes and the expression of collagen I, III, and a-SMA were assessed to indicate the biochemical changes in the vagina 2 weeks, 4 weeks, and 16 weeks after ovariectomy (n=6 for 2 and 4 weeks, n=12 for 16 weeks). Uniaxial biomechanical testing was conducted in the control group and ovariectomized rats 16 weeks after ovariectomy. Compared with the control group, the ovariectomy group showed a significant increase in the expression of collagen I 2 weeks after ovariectomy, while collagen III showed a declining trend. Two weeks after ovariectomy, the smooth muscle bundles began to become disorganized, and the fraction of smooth muscle in the nonvascular muscularis of the proximal vagina was significantly decreased (P<0.001). However, there was no difference in the expression of a-SMA in the distal vagina. Compared with the control group, the ovariectomy group had stiffer vaginas with a declining trend in the ultimate load 16 weeks after ovariectomy. In conclusion, surgically induced menopause had a significant short- and long-term impact on tissue composition and biomechanical properties of the rat vagina, which may lead to increased susceptibility to POP development.