Optimization and characterization of antileukemic L-asparaginase produced by Fusarium solani endophyte.
Sarah OsamaMoshera M El-ShereiDalia A Al-MahdyMokhtar BishrOsama SalamaMarwa M RaafatPublished in: AMB Express (2023)
L-asparaginase is an antileukemic enzyme that hydrolyzes L-asparagine into L-aspartic acid and ammonia, causing cell starvation and apoptosis in susceptible leukemic cell populations. Currently, L-asparaginase obtained from bacterial sources is constrained by several issues, including lesser productivity, stability, selectivity, and higher toxicity. The goal of this study is to provide fungal L-asparaginase with in-vitro effectiveness towards different human carcinomas. L-asparaginase from endophytic Fusarium solani (Gene Bank accession number MW209717) isolated from the roots of the medicinal plant Hedera helix L. was characterized and optimized experimentally for maximum L-asparaginase production in addition to evaluating its subsequent cytotoxicity towards acute monocytic leukemia and human skin fibroblast cell lines. The enzyme production was maximized using potato dextrose media (15.44 IU/ml/hr) at the 5th and 6th days of fermentation with incubation temperature 30 °C, 3% asparagine, 150-180 rpm agitation rate and a 250 ml flask. Enzyme characterization studies revealed that the enzyme maintained its thermal stability with temperatures up to 60 °C. However, its optimal activity was achieved at 35 °C. On measuring the enzymatic activity at various temperatures and different pH, maximum enzyme activity was recorded at 40 °C and pH 8 using 0.1 M asparagine concentration. Results also revealed promising cytotoxic activity against acute monocytic leukemia with IC 50 = 3.66 µg/ml and low cytotoxicity against tested normal human skin fibroblast cell line which suggested that it might have selective toxicity, and consequently it could be used as a less toxic alternative to the current formulations.
Keyphrases
- single cell
- acute myeloid leukemia
- oxidative stress
- liver failure
- bone marrow
- respiratory failure
- endothelial cells
- randomized controlled trial
- cell therapy
- drug induced
- drinking water
- climate change
- aortic dissection
- genome wide
- mesenchymal stem cells
- cell proliferation
- hepatitis b virus
- induced pluripotent stem cells
- saccharomyces cerevisiae
- ionic liquid
- room temperature
- genome wide identification