Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models.
Olumayowa K IdowuAdemola A OremosuOlufunke O DosumuAbdullahi A MohammedPublished in: Fly (2024)
Parkinson's disease (PD), the most prevalent type of parkinsonism, is a progressive neurodegenerative condition marked by several non-motor and motor symptoms. PD is thought to have a complex aetiology that includes a combination of age, genetic predisposition, and environmental factors. Increased expression of α-synuclein (α-Syn) protein is central to the evolvement of neuropathology in this devastating disorder, but the potential of ribose-cysteine and levodopa in abating pathophysiologic changes in PD model is unknown. Crosses were set up between flies conditionally expressing a pathological variant of human α-Syn (UAS-α-Syn) and those expressing GAL4 in neurons (elav-GAL4) to generate offspring referred to as PD flies. Flies were randomly assigned to five groups ( n = 40) from the total population of flies, with each group having five replicates. Groups of PD flies were treated with either 500 mg/kg ribose-cysteine diet, 250 mg/kg levodopa diet, or a combination of the two compounds for 21 days, whereas the control group (w 1118 ) and the PD group were exposed to a diet without ribose-cysteine or levodopa. In addition to various biochemical and neurochemical assays, longevity, larval motility, and gravitaxis assays were carried out. Locomotive capability, lifespan, fecundity, antioxidant state, and neurotransmitter systems were all significantly ( p < 0.05) compromised by overexpression of α-Syn. However, flies treated both ribose cysteine and levodopa showed an overall marked improvement in motor functions, lifespan, fecundity, antioxidant status, and neurotransmitter system functions. In conclusion, ribose-cysteine and levodopa, both singly and in combination, potentiated a therapeutic effect on alpha-synuclein transgenic Drosophila melanogaster models of Parkinsonism.
Keyphrases
- drosophila melanogaster
- parkinson disease
- deep brain stimulation
- fluorescent probe
- living cells
- physical activity
- endothelial cells
- oxidative stress
- high throughput
- poor prognosis
- gene expression
- type diabetes
- transcription factor
- high fat diet
- cystic fibrosis
- spinal cord
- newly diagnosed
- climate change
- staphylococcus aureus
- long non coding rna
- single cell