Login / Signup

Association of urinary sodium and potassium excretion with systolic blood pressure in the Dietary Approaches to Stop Hypertension Sodium Trial.

Parul ChaudharyRichard D Wainford
Published in: Journal of human hypertension (2020)
The 2019 National Academy of Science, Engineering and Medicine Dietary Reference Intakes (DRI) for Sodium (Na+) and Potassium (K+) Report concluded there remains insufficient evidence to establish a K+ DRI. This study tested the hypothesis that reduced Na+ and increased K+ excretion will positively associate with lower blood pressure in salt sensitive (SS) and salt resistant (SR) participants in the Dietary Approaches to Stop Hypertension Sodium Trial (DASH-Sodium). Via the NHLBI BioLINCC we accessed the DASH-Sodium dataset for data on systolic blood pressure (SBP), 24-h urinary Na+ and K+ excretion at screening (regular patient diet; N = 186, SS N = 222 SR) and post DASH diet (N = 71 SS, N = 119 SR). The relationships between SBP, urinary Na+ and K+ excretion, and Na+/K+ ratio were assessed via linear regression. At screening elevated urinary Na+ excretion positively associated with SBP in SS (1 g increase in urinary Na+ excretion = +1 0 ± 0.4 mmHg) but not SR participants, and urinary K+ excretion of <1 g K+/day was associated with higher SBP in SS and SR participants. Urinary K+ excretion ≥1 g/day, or a decreases in urinary Na+/K+ ratio, was not associated with lower SBP. Post the DASH-sodium diet intervention, SBP was reduced in SS and SR participants. However, no correlation was observed between reduced SBP and urinary K+ excretion or the urinary Na+/K+ ratio irrespective of the salt sensitivity of blood pressure. Our data support the DRI recommendation not to establish a K+ DRI and suggest further evidence is required to support a reduced Na+/K+ ratio to lower SBP.
Keyphrases
  • blood pressure
  • physical activity
  • randomized controlled trial
  • clinical trial
  • public health
  • study protocol
  • blood glucose
  • electronic health record
  • adipose tissue
  • phase iii
  • artificial intelligence