Reversible Cation-Selective Attachment and Self-Assembly of Human Tau on Supported Brain Lipid Membranes.
Stefania A MariSusanne WegmannKatharina TepperBradley T HymanEva-Maria MandelkowEckhard MandelkowDaniel J MüllerPublished in: Nano letters (2018)
Misfolding and aggregation of the neuronal, microtubule-associated protein tau is involved in the pathogenesis of Alzheimer's disease and tauopathies. It has been proposed that neuronal membranes could play a role in tau release, internalization, and aggregation and that tau aggregates could exert toxicity via membrane permeabilization. Whether and how tau interacts with lipid membranes remains a matter of discussion. Here, we characterize the interaction of full-length human tau (htau40) with supported lipid membranes (SLMs) made from brain total lipid extract by time-lapse high-resolution atomic force microscopy (AFM). We observe that tau attaches to brain lipid membranes where it self-assembles in a cation-dependent manner. Sodium triggers the attachment, self-assembly, and growth, whereas potassium inhibits these processes. Moreover, tau assemblies are stable in the presence of sodium and lithium but disassemble in the presence of potassium and rubidium. Whereas the pseudorepeat domains (R1-R4) of htau40 promote the sodium-dependent attachment to the membrane and stabilize the tau assemblies, the N-terminal region promotes tau self-assembly and growth.