Functional Analysis of a Highly Active β-Glucanase from Bispora sp. MEY-1 Using Its C-terminally Truncated Mutant.
Shuai YouTao TuRui MaHuo-Qing HuangYuan WangYing-Guo BaiXiao-Yun SuHui-Yi CaiBin YaoHui-Ying LuoPublished in: Journal of agricultural and food chemistry (2018)
A β-1,3-1,4-glucanase-encoding gene, Bisglu16B, was identified in Bispora sp. MEY-1. The deduced BisGlu16B consists of an N-terminal signal peptide, a catalytic module of glycoside hydrolase family 16 (GH16), and a C-terminal serine/proline-rich module. After expression in Pichia pastoris GS115, the purified recombinant BisGlu16B showed maximal activity at pH 4.0 and 55 °C and had broad substrate specificity (β-1,3-/β-1,4-mixed, β-1,3-, β-1,4-, and β-1,6-linked glucan, and β-1,4-mannan). The enzyme possessed high specific activities toward barley β-glucan (34 700 U·mg-1), lichenan (23 900 U·mg-1), and laminarin (9 000 U·mg-1). After removing the C-terminal module, the truncated mutant, BisGlu16B-ΔC, retained similar enzymatic properties to the wild type but displayed significantly enhanced activities (up to 2.5-fold). Functional and structural analyses indicated that the C-terminal module plays a key role in the substrate binding of BisGlu16B. This study provided an excellent candidate glucanase for industrial purposes and revealed the functions of a C-terminal serine/proline-rich region.