Login / Signup

An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch.

Satoshi IshidaNaohiro TerasakaTakayuki KatohHiroaki Suga
Published in: Nature chemical biology (2020)
When the primitive translation system first emerged in the hypothetical RNA world, ribozymes could have been responsible for aminoacylation. Given that naturally occurring T-box riboswitches selectively sense the aminoacylation status of cognate tRNAs, we introduced a domain of random sequence into a T-box-tRNA conjugate and isolated ribozymes that were self-aminoacylating on the 3'-terminal hydroxyl group. One of them, named Tx2.1, recognizes the anticodon and D-loop of tRNA via interaction with its stem I domain, similarly to the parental T-box, and selectively charges N-biotinyl-L-phenylalanine (Bio-lPhe) onto the 3' end of the cognate tRNA in trans. We also demonstrated the ribosomal synthesis of a Bio-lPhe-initiated peptide in a Tx2.1-coupled in vitro translation system, in which Tx2.1 catalyzed specific tRNA aminoacylation in situ. This suggests that such ribozymes could have coevolved with a primitive translation system in the RNA world.
Keyphrases
  • transcription factor
  • binding protein
  • heat shock
  • oxidative stress
  • room temperature
  • nucleic acid
  • neural network