Login / Signup

Design, synthesis, and biological evaluation of Helicobacter pylori inosine 5'-monophosphate dehydrogenase (HpIMPDH) inhibitors.

Niteshkumar U SahuGayathri PurushothamanVijay ThiruvenkatamPrashant S Kharkar
Published in: Drug development research (2018)
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes a crucial step in the biosynthesis of guanine nucleotides. Being a validated target for immunosuppressive, antiviral, and anticancer drug development, lately it has been exploited as a promising target for antimicrobial therapy. Extending our previous work on Mycobacterium tuberculosis IMPDH, GuaB2, inhibitor development, we screened a set of 23 new chemical entities (NCEs) with substituted flavone (Series 1) and 1,2,3-triazole (Series 2) core structures for their in vitro Helicobacter pylori IMPDH (HpIMPDH) and human IMPDH2 (hIMPDH2) inhibitory activities. All the NCEs possessed acceptable molecular, physicochemical, and toxicity property profiles. The ranges for HpIMPDH and hIMPDH2 inhibition were 9-99.9% and 16-57%, respectively, at 10 μM concentration. The most potent HpIMPDH inhibitor, 25c, exhibited IC50 value of 1.27 μM with no hIMPDH2 inhibitory activity. The moderately potent, structurally novel hit molecule, 25c, may serve as a lead for further design and development of highly potent HpIMPDH inhibitors.
Keyphrases