Login / Signup

Two dwarfing genes Rht-B1b and Rht-D1b show pleiotropic effects on grain protein content in bread wheat (Triticum aestivum L.).

Wenjing HuDi WuDongshen LiXiaoming ChengZunjie WangDie ZhaoJizeng Jia
Published in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2024)
Five QTL for wheat grain protein content were identified, and the effects of two dwarfing genes Rht-B1b and Rht-D1b on grain protein content were validated in multiple populations. Grain protein content (GPC) plays an important role in wheat quality. Here, a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) was used to identify quantitative trait loci (QTL) for GPC. Two hundred and five RILs and their parents were grown in three years in randomized complete blocks each with two replications, and genotyped using the wheat 55 K SNP array. Five QTL were identified for GPC on chromosomes 1A, 1B, 2D, 4B, and 4D. Notably, QGpc.yaas-4B (co-located with Rht-B1) and QGpc.yaas-4D (co-located with Rht-D1) were consistently detected across all experiments and best linear unbiased estimating, accounting for 6.61-8.39% and 6.05-10.21% of the phenotypic variances, respectively. The effects of these two dwarfing alleles Rht-B1b and Rht-D1b on reducing GPC and plant height were validated in two additional RIL populations and one natural population. This study lays a foundation for further investigating the effects of dwarfing genes Rht-B1b and Rht-D1b on wheat GPC.
Keyphrases