Login / Signup

Theoretical prediction of Janus PdXO (X = S, Se, Te) monolayers: structural, electronic, and transport properties.

Tuan V VuHuynh V PhucSohail AhmadBui D HoiNguyen V HieuSamah Al-QaisiA I KartamyshevNguyen N Hieu
Published in: RSC advances (2022)
Due to the broken vertical symmetry, the Janus material possesses many extraordinary physico-chemical and mechanical properties that cannot be found in original symmetric materials. In this paper, we study in detail the structural, electronic, and transport properties of 1T Janus PdXO monolayers (X = S, Se, Te) by means of density functional theory. PdXO monolayers are observed to be stable based on the analysis of the vibrational characteristics and molecular dynamics simulations. All three PdXO structures exhibit semiconducting characteristics with indirect bandgap based on evaluations with hybrid functional Heyd-Scuseria-Ernzerhof (HSE06). The influences of the spin-orbit coupling (SOC) on the band diagram of PdXO are strong. Particularly, when the SOC is included, PdTeO is calculated to be metallic by the HSE06+SOC approach. With high electron mobility, Janus PdXO structures have good potential for applications in future nanodevices.
Keyphrases
  • density functional theory
  • molecular dynamics simulations
  • molecular dynamics
  • molecular docking
  • high resolution
  • room temperature
  • risk assessment
  • human health
  • quantum dots
  • electron microscopy