Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: primary and secondary gene responses with links to disease progression.
Ravi SonkarHong MaDavid J WaxmanPublished in: Toxicological sciences : an official journal of the Society of Toxicology (2024)
Constitutive Androstane Receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP, a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared to males. Early (1-day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2-wk) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to pro-inflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle activated carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver non-parenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
Keyphrases
- transcription factor
- genome wide identification
- oxidative stress
- genome wide
- diabetic rats
- gene expression
- immune response
- induced apoptosis
- high glucose
- dna methylation
- drug induced
- high fat diet induced
- reactive oxygen species
- dna binding
- genome wide analysis
- high fat diet
- liver injury
- insulin resistance
- bioinformatics analysis
- fatty acid
- adipose tissue
- emergency department
- binding protein
- cell proliferation
- metabolic syndrome
- cell death
- skeletal muscle
- ischemia reperfusion injury
- toll like receptor
- anti inflammatory
- endoplasmic reticulum stress
- type diabetes
- adverse drug
- drug delivery
- electronic health record
- heat shock
- heat stress