Physicochemical Characterization, Glycosylation Pattern and Biosimilarity Assessment of the Fusion Protein Etanercept.
Othman MontacirHouda MontacirAndreas SpringerStephan HinderlichFereidoun MahboudiAmirhossein SaadatiMaria Kristina ParrPublished in: The protein journal (2018)
Etanercept is a soluble fusion protein of the tumor necrosis factor receptor (TNFR) extracellular domain, linked to an Fc part of IgG1. It possesses three N- and 13 O-glycosylation sites. Due to its complex structure, an analytical challenge is facing the development and approval of biosimilars. In the current study, physicochemical characterization using state-of-the-art analytics was performed to analyze intact and subunit masses, post-translational modifications (PTMs), higher order structure and potency of Etanercept originator Enbrel® and its biosimilar Altebrel™ (AryoGen Pharmed) in accordance to critical quality attributes of biopharmaceuticals. Intact mass and subunit analysis revealed a size of about 126 kDa for both biologicals. Similar glycoprotein species for the complete monomer and the Fc domain of originator and follow-on product were observed, however, small differences in lysine variants and oxidation were found. N-Glycopeptide analysis with UHPLC-QTOF-MSE confirmed the N-glycosylation sites (N149, N171 and N317) as well as Fc-specific glycosylation on N317, and TNFR-specific highly sialylated glycans on N149 and N171 on both investigated products. Small quantitative variations in the N-glycan profile were detected, although the N-glycans were qualitatively similar. Four different O-glycopeptides bearing core 1-type glycans were detected. For both, N- and O-glycopeptide analysis, determination was achieved without prior cleavage of the sialic acid residues for the first time. In addition, ion mobility spectrometry data confirmed close similarity of higher-order structure of both biologics. Furthermore, a neutralization assay, investigating the impact of altered PTMs on potency, indicated that the differences within all batches are still in the acceptable range for biosimilarity.
Keyphrases
- rheumatoid arthritis
- ankylosing spondylitis
- ms ms
- magnetic resonance imaging
- big data
- rheumatoid arthritis patients
- high resolution
- gene expression
- dna methylation
- electronic health record
- computed tomography
- systemic lupus erythematosus
- heat shock protein
- ultrasound guided
- tandem mass spectrometry
- fine needle aspiration