Login / Signup

Diverse branching forms regulated by a core auxin transport mechanism in plants.

Victoria M R SpencerLucy BentallCecily Jill Harrison
Published in: Development (Cambridge, England) (2023)
Diverse branching forms have evolved multiple times across the tree of life to facilitate resource acquisition and exchange with the environment. In the vascular plant group, the ancestral pattern of branching involves dichotomy of a parent shoot apex to form two new daughter apices. The molecular basis of axillary branching in Arabidopsis is well understood, but few regulators of dichotomous branching are known. Through analyses of dichotomous branching in the lycophyte, Selaginella kraussiana, we identify PIN-mediated auxin transport as an ancestral branch regulator of vascular plants. We show that short-range auxin transport out of the apices promotes dichotomy and that branch dominance is globally coordinated by long-range auxin transport. Uniquely in Selaginella, angle meristems initiate at each dichotomy, and these can develop into rhizophores or branching angle shoots. We show that long-range auxin transport and a transitory drop in PIN expression are involved in angle shoot development. We conclude that PIN-mediated auxin transport is an ancestral mechanism for vascular plant branching that was independently recruited into Selaginella angle shoot development and seed plant axillary branching during evolution.
Keyphrases
  • arabidopsis thaliana
  • high resolution
  • transcription factor
  • lymph node
  • poor prognosis
  • neoadjuvant chemotherapy
  • radiation therapy
  • ultrasound guided