Login / Signup

Tsc2 disruption in mesenchymal progenitors results in tumors with vascular anomalies overexpressing Lgals3.

Peter J KloverRajesh L ThangapazhamJiro KatoJi-An WangStasia A AndersonVictoria HoffmannWendy K SteagallShaowei LiElizabeth McCartNeera NathanJoshua D BernstockMatthew D WilkersonClifton L DalgardJoel MossThomas N Darling
Published in: eLife (2017)
Increased mTORC1 signaling from TSC1/TSC2 inactivation is found in cancer and causes tuberous sclerosis complex (TSC). The role of mesenchymal-derived cells in TSC tumorigenesis was investigated through disruption of Tsc2 in craniofacial and limb bud mesenchymal progenitors. Tsc2cKOPrrx1-cre mice had shortened lifespans and extensive hamartomas containing abnormal tortuous, dilated vessels prominent in the forelimbs. Abnormalities were blocked by the mTORC1 inhibitor sirolimus. A Tsc2/mTORC1 expression signature identified in Tsc2-deficient fibroblasts was also increased in bladder cancers with TSC1/TSC2 mutations in the TCGA database. Signature component Lgals3 encoding galectin-3 was increased in Tsc2-deficient cells and serum of Tsc2cKOPrrx1-cre mice. Galectin-3 was increased in TSC-related skin tumors, angiomyolipomas, and lymphangioleiomyomatosis with serum levels in patients with lymphangioleiomyomatosis correlating with impaired lung function and angiomyolipoma presence. Our results demonstrate Tsc2-deficient mesenchymal progenitors cause aberrant morphogenic signals, and identify an expression signature including Lgals3 relevant for human disease of TSC1/TSC2 inactivation and mTORC1 hyperactivity.
Keyphrases
  • stem cells
  • lung function
  • bone marrow
  • poor prognosis
  • chronic obstructive pulmonary disease
  • squamous cell carcinoma
  • skeletal muscle
  • mass spectrometry
  • papillary thyroid
  • extracellular matrix
  • adverse drug