Knocking-Down CD147/EMMPRIN Expression in CT26 Colon Carcinoma Forces the Cells into Cellular and Angiogenic Dormancy That Can Be Reversed by Interactions with Macrophages.
Gabriele FeigelmanElina SimanovichPhillipp BrockmeyerMichal Amit RahatPublished in: Biomedicines (2023)
Metastasis in colorectal cancer is responsible for most of the cancer-related deaths. For metastasis to occur, tumor cells must first undergo the epithelial-to-mesenchymal transition (EMT), which is driven by the transcription factors (EMT-TFs) Snail, Slug twist1, or Zeb1, to promote their migration. In the distant organs, tumor cells may become dormant for years, until signals from their microenvironment trigger and promote their outgrowth. Here we asked whether CD147/EMMPRIN controls entry and exit from dormancy in the aggressive and proliferative (i.e., non-dormant) CT26 mouse colon carcinoma cells, in its wild-type form (CT26-WT cells). To this end, we knocked down EMMPRIN expression in CT26 cells (CT26-KD), and compared their EMT and cellular dormancy status (e.g., proliferation, pERK/pP38 ratio, vimentin expression, expression of EMT-TFs and dormancy markers), and angiogenic dormancy (e.g., VEGF and MMP-9 secretion, healing of the wounded bEND3 mouse endothelial cells), to the parental cells (CT26-WT). We show that knocking-down EMMPRIN expression reduced the pERK/pP38 ratio, enhanced the expression of vimentin, the EMT-TFs and the dormancy markers, and reduced the proliferation and angiogenic potential, cumulatively indicating that cells were pushed towards dormancy. When macrophages were co-cultured with both types of CT26 cells, the CT26-WT cells increased their angiogenic potential, but did not change their proliferation, state of EMT, or dormancy, whereas the CT26-KD cells exhibited values mostly similar to those of the co-cultured CT26-WT cells. Addition of recombinant TGFβ or EMMPRIN that simulated the presence of macrophages yielded similar results. Combinations of low concentrations of TGFβ and EMMPRIN had a minimal additive effect only in the CT26-KD cells, suggesting that they work along the same signaling pathway. We conclude that EMMPRIN is important as a gatekeeper that prevents cells from entering a dormant state, and that macrophages can promote an exit from dormancy.
Keyphrases
- induced apoptosis
- signaling pathway
- cell cycle arrest
- epithelial mesenchymal transition
- computed tomography
- endothelial cells
- poor prognosis
- image quality
- contrast enhanced
- positron emission tomography
- magnetic resonance imaging
- transcription factor
- cell death
- risk assessment
- lymph node
- oxidative stress
- pi k akt
- magnetic resonance
- transforming growth factor
- binding protein