Premelting, solid-fluid equilibria, and thermodynamic properties in the high density region based on the Lennard-Jones potential.
Andreas KösterPeter MausbachJadran VrabecPublished in: The Journal of chemical physics (2018)
The Lennard-Jones potential is used to study the high density fluid and face centered cubic solid state region, including solid-fluid equilibria. Numerous thermodynamic properties are considered, elucidating the behavior of matter in this poorly studied region. The present molecular simulation results are extensively compared to the latest and most accurate equation of state models for fluid and solid phases. It is shown that current models do not cover the thermodynamics of the system adequately near the solid-fluid phase transition. Furthermore, thermodynamic stability is analyzed, indicating that published solid-fluid coexistence data may not be correct at high temperatures. Particular attention is paid to the premelting zone, a range of states close to the melting line, which is characterized by strong variations of several thermodynamic properties. Because the underlying microscopic mechanisms are not yet fully understood, it is hoped that these data may contribute to the development of a theoretical framework for describing premelting effects.