Beyond Newton's law of cooling in evaluating magnetic hyperthermia performance: a device-independent procedure.
Sergiu RutaYilian Fernández-AfonsoSamuel E RannalaMaría Del Puerto MoralesSabino VeintemillasCarlton JonesLucia GutiérrezRoy W ChantrellDavid SerantesPublished in: Nanoscale advances (2024)
Accurate knowledge of the heating performance of magnetic nanoparticles (MNPs) under AC magnetic fields is critical for the development of hyperthermia-mediated applications. Usually reported in terms of the specific loss power (SLP) obtained from the temperature variation (Δ T ) vs. time ( t ) curve, such an estimate is subjected to a huge uncertainty. Thus, very different SLP values are reported for the same particles when measured on different equipment/in different laboratories. This lack of control clearly hampers the further development of nanoparticle-mediated heat-triggered technologies. Here, we report a device-independent approach to calculate the SLP value of a suspension of magnetic nanoparticles: the SLP is obtained from the analysis of the peak at the AC magnetic field on/off switch of the Δ T (time) curve. The measurement procedure, which itself constitutes a change of paradigm within the field, is based on the heat diffusion equation, which is still valid when the assumptions of Newton's law of cooling are not applicable, as (i) it corresponds to the ideal scenario in which the temperature profiles of the system during heating and cooling are the same; and (ii) it diminishes the role of coexistence of various heat dissipation channels. Such an approach is supported by theoretical and computational calculations to increase the reliability and reproducibility of SLP determination. Furthermore, the new methodological approach is experimentally confirmed, by magnetic hyperthermia experiments performed using 3 different devices located in 3 different laboratories. Furthermore, the application of this peak analysis method (PAM) to a rapid succession of stimulus on/off switches which results in a zigzag-like Δ T ( t ), which we term the zigzag protocol, allows evaluation of possible variations of the SLP values with time or temperature.