For many continuous distributions, a closed-form expression for their quantiles does not exist. Numerical approximations for their quantiles are developed on a distribution-by-distribution basis. This work develops a general approximation for quantiles using the Taylor expansion. Our method only requires that the distribution has a continuous probability density function and its derivatives can be derived to a certain order (usually 3 or 4). We demonstrate our unified approach by approximating the quantiles of the normal, exponential, and chi-square distributions. The approximation works well for these distributions.