Login / Signup

Compilation of Ionic Clusters with the Rock Salt Structure: Accurate Benchmark Thermochemical Data, Assessment of Quantum Chemistry Methods, and the Convergence Behavior of Lattice Energies.

Bun Chan
Published in: The journal of physical chemistry. A (2023)
In the present study, computational quantum chemistry is used to obtain lattice energies (LEs) for a range of ionic clusters with the NaCl structure. Specifically, the compounds include NaF, NaCl, MgO, MgS, KF, CaO, and CaS clusters, (MX) n , with n = 1, 2, 4, 6, 8, 12, 16, 24, 32, 40, 50, 60, 75, 90, and 108. The highest-level W2 and W1X-2 methods are applied to the small clusters with n = 1 to 8 (the MX35 data set). The assessment with MX35 shows that, for the calculation of geometries and vibrational frequencies, the PBE0-D3(BJ) and PBE-D3(BJ) DFT methods are reasonable, but the calculation of atomization energies is more challenging. This is a result of different systematic deviations for clusters of different species. Thus, species-specific adjustments are applied for larger clusters, which are calculated with the DuT-D3 double-hybrid DFT method, the MN15 DFT method, and the PM7 semi-empirical method. They yield smoothly converging LEs to the bulk values. It is also found that, for the alkali-metal species, the LEs for a single molecule are ∼70% of the bulk values, while for the alkali-earth species, they are ∼80%. This has enabled a straightforward means to the first-principles estimation of LEs for similarly structured ionic compounds.
Keyphrases