Login / Signup

Mycotoxins and cellular senescence: the impact of oxidative stress, hypoxia, and immunosuppression.

Li YouEugenie NepovimovaMarian ValkoQinghua WuKamil Kuca
Published in: Archives of toxicology (2022)
Mycotoxins induce oxidative stress, hypoxia, and cause immunosuppressive effects. Moreover, emerging evidence show that mycotoxins have a potential of inducing cellular senescence, which are involved in their immunomodulatory effects. Mycotoxins upregulate the expression of senescence markers γ-H2AX, senescence-associated β-galactosidase, p53, p16, and senescence-associated secretory phenotype (SASP) inflammatory factors. Moreover, mycotoxins cause senescence-associated cell cycle arrest by diminishing cyclin D 1 and Cdk4 pathways, as well as increasing the expression of p53, p21, and CDK6. Mycotoxins may induce cellular senescence by activating reactive oxygen species (ROS)-induced oxidative stress. In addition, hypoxia acts as a double-edged sword on cell senescence; it could both act as the stress-induced senescence and also hinder the onset of cellular senescence. The SASP inflammatory factors have the ability to induce an immunosuppressive environment, while mycotoxins directly cause immunosuppression. Therefore, there is a potential relationship between mycotoxins and cellular senescence that synergistically cause immunosuppression. However, most of the current studies have involved the effect of mycotoxins on cell cycle arrest, but only limited in-depth research has been carried out to link the occurrence of this condition (cell cycle arrest) with cellular senescence.
Keyphrases