Login / Signup

Dual Energy Transfer-Based Fluorescent Nanoprobe for Imaging miR-21 in Nonalcoholic Fatty Liver Cells with Low Background.

Shui Qin ChaiWen Yi LvJia Hui HeChun Hong LiYuan-Fang LiChun Mei LiCheng Zhi Huang
Published in: Analytical chemistry (2019)
Nonalcoholic fatty liver disease (NAFLD) can progress gradually to liver failure, early warning of which is critical for improving the cure rate of NAFLD. In situ imaging and monitoring of overexpressed miR-21 is an advanced strategy for NAFLD diagnosis. However, this strategy usually suffers from the high background imaging in living cells owing to the complexity of the biological system. To overcome this problem, herein, we have developed a one-donor-two-acceptor nanoprobe by assembling gold nanoparticles (AuNPs) coupled with BHQ2 (AuBHQ) and quantum dots (QDs) through DNA hybridization for imaging of miR-21 in living cells. The fluorescence of QDs was quenched up to 82.8% simultaneously by the AuNPs and the BHQ2 via nanometal surface energy transfer and fluorescence resonance energy transfer, reducing the background signals for target imaging. This low background fluorescent nanoprobe was successfully applied for imaging the target miR-21 in nonalcoholic fatty liver cells by catalyzing the disassembly of QDs with the AuBHQ and the fluorescence recovery of QDs. In addition, the sensitivity of this nanoprobe has also been enhanced toward detecting miR-21 in the range of 2.0-15.0 nM with the detection limit (LOD, 3σ) of 0.22 nM, which was 13.5 times lower than that without BHQ2. The proposed approach provides a new way for early warning, treatments, and prognosis of NAFLD.
Keyphrases