Login / Signup

Information Retrieval from Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation and Breath-Extraction Techniques at Different Sampling Rates.

Pierluigi RealiRiccardo LolattoStefania CoelliGabriella TartagliaAnna Maria Bianchi
Published in: Sensors (Basel, Switzerland) (2022)
The increasingly widespread diffusion of wearable devices makes possible the continuous monitoring of vital signs, such as heart rate (HR), heart rate variability (HRV), and breath signal. However, these devices usually do not record the "gold-standard" signals, namely the electrocardiography (ECG) and respiratory activity, but a single photoplethysmographic (PPG) signal, which can be exploited to estimate HR and respiratory activity. In addition, these devices employ low sampling rates to limit power consumption. Hence, proper methods should be adopted to compensate for the resulting increased discretization error, while diverse breath-extraction algorithms may be differently sensitive to PPG sampling rate. Here, we assessed the efficacy of parabola interpolation, cubic-spline, and linear regression methods to improve the accuracy of the inter-beat intervals (IBIs) extracted from PPG sampled at decreasing rates from 64 to 8 Hz. PPG-derived IBIs and HRV indices were compared with those extracted from a standard ECG. In addition, breath signals extracted from PPG using three different techniques were compared with the gold-standard signal from a thoracic belt. Signals were recorded from eight healthy volunteers during an experimental protocol comprising sitting and standing postures and a controlled respiration task. Parabola and cubic-spline interpolation significantly increased IBIs accuracy at 32, 16, and 8 Hz sampling rates. Concerning breath signal extraction, the method holding higher accuracy was based on PPG bandpass filtering. Our results support the efficacy of parabola and spline interpolations to improve the accuracy of the IBIs obtained from low-sampling rate PPG signals, and also indicate a robust method for breath signal extraction.
Keyphrases
  • heart rate
  • heart rate variability
  • blood pressure
  • randomized controlled trial
  • machine learning
  • healthcare
  • deep learning
  • health information
  • respiratory tract
  • low cost
  • social media