Comparison of antiproliferative effect of epigallocatechin gallate when loaded into cationic solid lipid nanoparticles against different cell lines.
Amélia M SilvaCarlos Martins-GomesJoana F FangueiroTatiana AndreaniEliana Barbosa SoutoPublished in: Pharmaceutical development and technology (2019)
Several therapeutic properties have been attributed to epigallocatechin gallate (EGCG), a phytopharmaceutical polyphenol with antioxidant and antiproliferative activity. EGCG is, however, very prone to oxidation in aqueous solutions which changes its bioactive properties. Its loading in nanoparticles has been proposed to reduce its degradation while increasing its in vivo efficacy. The aim of this study was to compare the antiproliferative effect of EGCG before and after its loading in solid lipid nanoparticles (SLNs), against five different cell lines (Caco-2, HepG2, MCF-7, SV-80 and Y-79). EGCG produced concentration- and time-dependent antiproliferative effect, with efficacy dependent on the cell line. The order of potency was: MCF-7>SV-80>HepG2>Y-79>Caco-2, for 24 h exposure (MCF-7 IC50=58.60 ± 3.29 µg/mL; Caco-2 IC50>500.00 µg/mL). To the best of our knowledge this is the first study reporting EGCG antiproliferative effect in SV-80 and Y-79 cells. DDAB-SLN physicochemical properties (size ∼134 nm; PI∼0.179; ZP ∼+28mV) were only slightly modified with EGCG loading (EGCG-DDAB-SLN: ∼144 nm; PI∼0.160; ZP ∼+26mV). EGCG loading in SLN, only slightly increases the EGCG antiproliferative effect in MCF-7 and SV-80 cells. SLN exhibited intrinsic toxicity, attributed to the surfactant used in its production. From the obtained results, the biocompatibility of blank SLN must be also considered when testing the efficacy of loaded phytopharmaceutics.