DNA methylation-based telomere length is associated with HIV infection, physical frailty, cancer, and all-cause mortality.
Xiaoyu LiangBradley E AouizeratKaku So-ArmahMardge H CohenVincent C MarconiKe XuAmy C JusticePublished in: Aging cell (2024)
Telomere length (TL) is an important indicator of cellular aging. Shorter TL is associated with several age-related diseases including coronary heart disease, heart failure, diabetes, osteoporosis, and cancer. Recently, a DNA methylation-based TL (DNAmTL) estimator has been developed as an alternative method for directly measuring TL. In this study, we examined the association of DNAmTL with cancer prevalence and mortality risk among people with and without HIV in the Veterans Aging Cohort Study Biomarker Cohort (VACS, N = 1917) and Women's Interagency HIV Study Cohort (WIHS, N = 481). We profiled DNAm in whole blood (VACS) or in peripheral blood mononuclear cells (WIHS) using an array-based method. Cancer prevalence was estimated from electronic medical records and cancer registry data. The VACS Index was used as a measure of physiologic frailty. Models were adjusted for self-reported race and ethnicity, batch, smoking status, alcohol consumption, and five cell types (CD4, CD8, NK, B cell, and monocyte). We found that people with HIV had shorter average DNAmTL than those without HIV infection [beta = -0.25, 95% confidence interval (-0.32, -0.18), p = 1.48E-12]. Greater value of VACS Index [beta = -0.002 (-0.003, -0.001), p = 2.82E-05] and higher cancer prevalence [beta = -0.07 (-0.10, -0.03), p = 1.37E-04 without adjusting age] were associated with shortened DNAmTL. In addition, one kilobase decrease in DNAmTL was associated with a 40% increase in mortality risk [hazard ratio: 0.60 (0.44, 0.82), p = 1.42E-03]. In summary, HIV infection, physiologic frailty, and cancer are associated with shortening DNAmTL, contributing to an increased risk of all-cause mortality.
Keyphrases
- papillary thyroid
- dna methylation
- antiretroviral therapy
- squamous cell
- hiv positive
- mental health
- lymph node metastasis
- gene expression
- young adults
- human immunodeficiency virus
- dendritic cells
- machine learning
- endothelial cells
- alcohol consumption
- single cell
- postmenopausal women
- left ventricular
- stem cells
- body composition
- insulin resistance
- weight loss
- peripheral blood