Three-Phase Handover Management and Access Point Transition Scheme for Dynamic Load Balancing in Hybrid LiFi/WiFi Networks.
Sallar Salam MuradSalman YussofWahidah HashimRozin BadeelPublished in: Sensors (Basel, Switzerland) (2022)
Since LiFi and WiFi do not interfere with one another, a LiFi/WiFi hybrid network may provide superior performance to existing wireless options. With a large number of users and constant changes, a network can easily become overloaded, leading to slowdowns and fluctuations in data transfer speeds. Handover (HO) increases significantly with an increase in users, which can negatively impact system performance and quality of service (QoS) due to connection loss and/or delay. Innovative three-phase handover management and AP transition (TPHM-APT) is proposed with the goals of maintaining a steady link with reduced HOs for all connected users, meeting high per-user data rates, and having low outage performance. The proposed scheme primarily focuses on reducing the total number of HOs, which improves reliability and keeps user densities low on individual LiFi APs, which conserves bandwidth and energy. Conventional methods of HO management and user assignment, such as those based on signal strength strategy (SSS), involve reallocating users to a different AP the moment they encounter a HO. Our technique consists of three stages that focus on the optical gain, the incidence angle of the receiver FOV, and user mobility speed for decision-making. Specifically, a data rate threshold (DRT), which is equivalent to the data rate gained from the optical gain, is used to determine whether users must be served by a LiFi or a WiFi AP. In addition, an incidence angle threshold (IAT) is identified to manage the handover process and user AP transition with the consideration of the user mobility threshold (UMT). The proposed method considers load balancing (LB) among all connected users as well. This approach is evaluated using Monte Carlo simulations with MATLAB. Mathematical expressions are derived to analyze the performance of the proposed method. Different aspects, for example, Outage Probability, HO Overhead, User density, System Average Throughput (SAT), and Average Data Rate Requirement (ADRR), are studied. Analysis shows performance gains in overall system performance in terms of system data rates, fairness, and HO rates. Simulation results show that against the standard HO scheme and traditional HO skipping and APA methods, the proposed scheme can effectively decrease HO rates, save LiFi resources, and increase user throughput. It also shows good correspondence to the analysis and reveals the associated trade-offs that occur when moving between the span of narrow to wide FOVs and vice versa (HO rates and APS). The proposed scheme achieves almost identical results for low-density and high-density systems as well, with different ADRR and HO overhead values.