Login / Signup

Anxiety state impact on recovery of runners with lower extremity injuries.

Aimee MadsenSharareh SharififarJordan OberhausKevin R VincentHeather K Vincent
Published in: PloS one (2022)
This prospective cohort study examined the impact of high anxiety levels on psychological state and gait performance during recovery in runners with lower body injuries. Recreational runners diagnosed with lower body injuries who had reduced running volume (N = 41) were stratified into groups using State Trait Anxiety Inventory (STAI) scores: high anxiety (H-Anx; STAI ≥40 points) and low anxiety (L-Anx; STAI <40 points). Runners were followed through rehabilitation to return-to-run using monthly surveys. Main outcome measures included kinesiophobia (Tampa Scale of Kinesiophobia, TSK-11), Positive and Negative Affect Schedule (PANAS; Positive and negative scores), Lower Extremity Function Scale (LEFS), running recovery (University of Wisconsin Running Injury and Recovery Index [UWRI]) and CDC Healthy Days modules for general health, days of anxiety/tension, disrupted sleep and work/usual activities. Running biomechanics were assessed at baseline and the final visit using 3D motion capture and a force-plated treadmill. The time to return-to-running for was 5.0±3.1 and 7.9±4.1 months for L-Anx and H-Anx, respectively and participants who withdrew (n = 15) did so at 7.7±6.2 months. L-Anx maintained low anxiety and H-Anx reduced anxiety from baseline to final visit (STAI = 31.5 to 28.4 points, 50.4 to 37.8 points, respectively), whereas the withdrawn runners remained clinically anxious at their final survey (41.5 to 40.3 points; p < .05). Group by time interactions were found for PANAS positive, LEFS UWRI, general health scores, and days feeling worry, tension and anxiety (all p < .05). Final running performance in L-Anx compared to H-Anx was most improved with cadence (8.6% vs 3.5%; p = .044), impact loading rate [-1.9% vs +8.9%] and lower body stiffness [+14.1% vs +3.2%; all p < .05). High anxiety may identify runners who will experience a longer recovery process, health-related functional disruptions, and less optimization of gait biomechanics during rehabilitation after a lower extremity injury.
Keyphrases
  • sleep quality
  • high intensity
  • healthcare
  • gene expression
  • physical activity
  • depressive symptoms
  • cross sectional
  • mass spectrometry
  • high resolution
  • health information
  • cell proliferation
  • single molecule
  • resting state