Investigating the Physiological and Molecular Responses of Solanum lycopersicum hp Mutants to Light of Different Quality for Biotechnological Applications.
Mikhail VereshchaginVladimir KreslavskiYury V IvanovAlexandra IvanovaTamara KumachovaAndrey S RyabchenkoAnatoliy KosobryukhovVladimir KuznetsovPavel P PashkovskiyPublished in: International journal of molecular sciences (2023)
The effect of the light of different spectral compositions, white fluorescent light (WFL), red light (RL, 660 nm), blue light (BL, 450 nm), green light (GL, 525 nm), and white LED light (WL, 450 + 580 nm), on the physiological parameters of Solanum lycopersicum 3005 hp-2 (defective for a DET1 gene) and 4012 hp-1w ; 3538 hp-1 ; 0279 hp-1.2 (defective for a DDB1a gene) photomorphogenetic mutants was studied. The parameters of the primary photochemical processes of photosynthesis, photosynthetic and transpiration rates, the antioxidant capacity of low-molecular weight antioxidants, the content of the total phenolic compounds, including flavonoids, and the expression of the genes involved in light signaling and biosynthesis of secondary metabolites were determined. Under BL, the 3005 hp-2 mutant showed the highest nonenzymatic antioxidant activity, which occurred to a greater extent due to the increase in flavonoid content. At the same time, under BL, the number of secretory trichomes on the surface of the leaves of all mutants increased equally. This suggests the accumulation of flavonoids inside leaf cells rather than in trichomes on the leaf surface. The data obtained indicate the possibility of using the hp-2 mutant for biotechnology to increase its nutritional value by enhancing the content of flavonoids and other antioxidants by modulating the spectral composition of light.